An Overview of Overactive Bladder and Its Pharmacological Management with a Focus on Anticholinergic Drugs

George DeMaagd, PharmD, BCPS, and Jeffrey D. Geibig, PharmD

Although OAB is often described as being synonymous with UI, most notably urge incontinence, it can occur with or without the features of this disorder. Approximately one third (37%) of patients with OAB have incontinence (“wet” OAB), whereas two thirds (63%) are not incontinent of urine (“dry” OAB).4,5

Urinary incontinence is a complex condition that results from a variety of etiologic mechanisms. In most textbooks, it is characterized by various types or classifications, including urge, stress, overflow, and mixed forms. Patients with OAB may or may not experience UI; within the various UI types, however, the terms OAB and “urge” are often used. A complete review of UI is beyond the scope of this paper.

Table 1 summarizes the various types, causes, common symptoms, and treatments of UI.6–12

Bladder Anatomy and Physiology

The anatomy of the bladder is presented in Figure 1. Certain features of this flexible organ are important in descriptions of the pathophysiology of OAB.13,14 The anatomy of the bladder includes the detrusor muscle and the internal and external sphincters. Neurological control of micturition or urination involves the central nervous system (CNS) (the pons), the spinal cord, and the peripheral nerves. Innervation involves the parasympathetic nervous system (PNS), the sympathetic nervous system (SNS), and somatic nervous systems, which must work together for proper bladder control.

In brief, the physiology of the bladder and the micturition process are regulated by the nervous systems. The PNS involves the neurotransmitter acetylcholine and its action on muscarinic or cholinergic receptors. When the PNS is blocked, the terms “antimuscarinic” and “anticholinergic” are often used interchangeably. The SNS involves the neurotransmitters epinephrine or norepinephrine and alpha or beta receptors. Other terms include “alpha-adrenergic” and “beta-adrenergic,” which refer to agonists of this system.
Bladder control and function can briefly be described as follows (see Figure 1). The bladder fills when SNS control results in a relaxed detrusor muscle and in closed sphincters at the bladder outlet. The SNS also inhibits the PNS during this period, as shown in the figure. When the bladder reaches a certain volume (e.g., from a beverage, 200–400 ml), signals move from the spinal cord to brain centers, resulting in the sensation of urge. At the appropriate time, when a person is ready to void, cholinergic neurons in the PNS system release acetylcholine, which acts on muscarinic receptors in the bladder detrusor smooth muscle to create contractions.

The SNS also allows the internal sphincter to open, and the somatic nervous system (under voluntary control) opens the external sphincter. The result is parasympathetic stimulation of the detrusor muscle, leading to bladder contraction with open sphincters, allowing urine release (micturition) from the bladder.2,15,16

Background of Overactive Bladder

It is thought that OAB is related to changes or dysfunction of the detrusor muscle involving muscarinic receptors, but other mechanisms may also be involved and may include other receptor systems.8,10 These changes result in a predisposition

<table>
<thead>
<tr>
<th>Table 1 Overview of Urinary Incontinence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Incontinence</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Urge incontinence</td>
</tr>
<tr>
<td>(detrusor overactivity)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Stress incontinence</td>
</tr>
<tr>
<td>(outlet incompetence)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mixed incontinence</td>
</tr>
<tr>
<td>Overflow incontinence</td>
</tr>
<tr>
<td>Atonic bladder</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Functional incontinence</td>
</tr>
</tbody>
</table>

Data compiled from references 6–12.
toward unstable bladder contractions or overactivity of the detrusor muscle, leading to OAB symptoms. Although the exact mechanism is not completely understood, various mechanisms have been proposed. Most mechanisms focus on CNS involvement, suggesting that increased CNS activity influences or decreases the inhibition of these contractions; others suggest an increased detrusor muscle sensitivity to central stimulation.12,15–19

The International Continence Society (ICS) defines OAB as a complex of symptoms that include urgency, with or without UI, and additional features that include frequency and nocturia.3 Although OAB is common, it remains undiagnosed and affects approximately 16% of the U.S. population. OAB is not necessarily a disease of only the elderly; it is often observed in people 40 to 64 years of age.2,4,5,19

The National Bladder Evaluation (NOBLE) survey project defined the clinical presentation of OAB without UI as feelings of urgency of at least four times or more over the course of a month, more than eight micturitions daily, or using various coping strategies (e.g., restriction of fluid intake). The project defined OAB with UI as including these features as well as three leakage episodes not related to stress incontinence or other causes such as reversible factors (e.g., metabolic or pathologic causes).5,17

The symptoms of OAB are often unreported by patients and are thus undertreated by clinicians. The NOBLE survey reported that OAB affects more than 30 million Americans, with a prevalence of 17% in women and 16% in men. A higher percentage of women report incontinence with OAB (9%) compared with men (3%).5,17

The prevalence of OAB increases with age, especially in patients older than age 75.4 In long-term-care facilities, OAB has been reported to affect up to 50% of all residents.20,21 OAB imposes significant social, economic, psychological, and physical morbidity on patients, especially women.4 It affects quality of life and increases the risk of numerous comorbidities, including urinary tract infections (UTIs), pressure ulcers, falls, and fractures.22–24

As with UI, the causes of and risk factors for OAB are numerous and are not disease-specific (Table 2). Common risk factors include age, especially in the over-65 group; obesity; spinal cord injuries; neuropathies; and neurological diseases, including cerebrovascular events (strokes), Alzheimer’s disease, and Parkinson’s disease. Reversible risk factors (non-neurogenic causes) may include UTIs, medications, and obstructions.2,14,19,25–29

Complications of OAB include skin ulcerations in patients with concurrent UI, UTIs, and falls and fractures, which are usually related to nocturia.23,28 Psychosocial influences, including isolation and depression, affect sleep quality.4,5,20 Economic burdens associated with OAB include both direct costs for diagnosis and treatment and indirect costs related to productivity.24,31,32–36 Hospital and nursing-home admissions related to OAB are especially costly.28 The yearly cost of OAB to society was close to $13 billion in 2000.20,34,35 Data from insurance claims also indicated a five-fold greater rate of spending in patients with OAB.27

Evaluation

OAB may be initially evaluated by the patient’s primary care physician, but further evaluation is often required by a urologist. Although OAB is a symptomatic diagnosis, an assessment may include a complete medical history; physical findings; urinalysis; and optional urodynamic studies, cystoscopy, and imaging.21,28

Treatment

The management of OAB includes both nonpharmacological and pharmacological methods. Nonpharmacological methods include simple interventions, such as removing agitators (e.g., caffeine), maintaining adequate hydration, and timing fluid intake, or more invasive procedures may be recommended.39–41

Behavioral modification therapy involves bladder training, timed voiding, and encouragement of gradual increases of the time intervals between voidings. Usually, voiding is started at one-hour to two-hour intervals and is increased from that point. Behavioral modification should be considered before drug therapy is begun and may be more effective and safer for some patients.

Pelvic-floor exercises may also improve detrusor overactivity and can help relieve the symptoms of OAB.45–44 Various surgical procedures and electrical stimulation with sacral neurostimulation are also used in the treatment of OAB.

Each procedure has its place in therapy along with its advantages and disadvantages in addition to cost-related concerns. The appropriate treatment may be determined after a discus-

Table 2 Risk Factors Associated with Overactive Bladder

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Comorbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary tract infections or obstruction</td>
<td>Cardiac disease (heart failure)</td>
</tr>
<tr>
<td>Estrogen deficiency</td>
<td>Drugs (caffeine, alcohol, diuretics, narcotics, calcium-channel blockers)</td>
</tr>
<tr>
<td>Aging changes, sphincter weakness</td>
<td>Cholinesterase inhibitors</td>
</tr>
<tr>
<td>Benign prostatic hyperplasia (males)</td>
<td>Psychological and sleep disorders</td>
</tr>
<tr>
<td>Dementia, Parkinson’s disease, stroke, multiple sclerosis, or other neurological diseases or conditions</td>
<td>Diabetes mellitus and associated complications, Diabetes insipidus</td>
</tr>
<tr>
<td>Spinal injuries or diseases</td>
<td>Obesity</td>
</tr>
</tbody>
</table>

Data compiled from references 2, 14, 19, and 24–29.
sion between patient and clinician. In some cases, nonpharmacological therapies may be the most successful when combined with pharmacological therapy.

Pharmacological Management

Numerous medications have been used in the management of OAB, including traditional agents such as calcium-channel blockers, baclofen (Lioresal, Novartis), intrathecal clonidine (Catapres, Boehringer Ingelheim), intravesical capsaicin, estrogen, and alpha-adrenergic antagonists; however, clinical evidence supporting their utility is limited. Other investigational therapies that might have a future role include duloxetine (Cymbalta, Forest), a mixed serotonergic and SNS-acting agent; serotonergic agonists, botulinum toxin type A (Botox, Allergan), desmopressin, dopamine agonists, potassium-channel transporters, afferent-nerve inhibitors, gamma-aminobutyric acid (GABA) agonists, beta, antagonists, and prostaglandin synthesis inhibitors.

Overview of Anticholinergic Drugs

The most effective and commonly used medications for the treatment of OAB have been those with anticholinergic (AC) properties (Table 3). After we present an overview of these AC agents, we will review the potential advantages of each one.

The central cholinergic transmitter and muscarinic receptor systems (the M1 through M5 series) involve a number of organ systems. These complex multiple receptor systems include the CNS (brain), eyes, cardiac tissue, salivary glands, bladder, ophthalmic tissue, gastrointestinal (GI) tract, and other smooth muscle tissues.

Table 4 describes common organ systems and the muscarinic receptors located within them as well as the effects of AC or antimuscarinic blockage on these organ systems.

Adverse Effects

The major concern associated with AC drugs, especially because most patients with OAB are elderly, is the side-effect profile. AC agents may be problematic by causing both peripheral and central adverse effects (Table 5).

Influence on Organ Systems

Elderly patients are at an increased risk for developing delirium from AC drugs, especially if they have an underlying mild cognitive impairment or dementia. Central cholinergic transmitter systems are located in the hippocampus and cortex, which are important regions of the brain for memory and learning.

<table>
<thead>
<tr>
<th>Older Agents (Rarely Used)</th>
<th>Newer Agents (Commonly Used)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricyclic antidepressants:</td>
<td>• Oxybutynin† regular-release</td>
</tr>
<tr>
<td>imipramine (Tofranil, Novartis/</td>
<td>(Ditropan, Ortho-McNeil)</td>
</tr>
<tr>
<td>Mallinckrodt),* others</td>
<td>• Long-acting (Ditropan XL)</td>
</tr>
<tr>
<td>• Transdermal oxybutynin (Oxytrol,</td>
<td>• Transdermal oxybutynin (Oxytrol,</td>
</tr>
<tr>
<td>Watson Labs)</td>
<td>Watson Labs)</td>
</tr>
<tr>
<td>Dicyclomine (Bentyl, Aventis)</td>
<td>• Tolterodine (Detrol, Pfizer)</td>
</tr>
<tr>
<td>• Tolterodine LA (Detrol LA)</td>
<td>• Tolterodine LA (Detrol LA)</td>
</tr>
<tr>
<td>Hyoscynamine (Levsin, Levsinex,</td>
<td>Trospium (Sanctura, Esprin/Indevus)</td>
</tr>
<tr>
<td>Cystospaz, Schwarz Pharma)</td>
<td>Propantheline (Pro-Banthine)</td>
</tr>
<tr>
<td>Darifenacin (Enablex, Novartis)</td>
<td>Solifenacin (VESicare, Astellas/GlaxoSmithKline)</td>
</tr>
<tr>
<td>Flavoxate (Urispas, Impax/</td>
<td>• Also increases alpha-adrenergic tone at the internal sphincter.</td>
</tr>
<tr>
<td>Ortho-McNeil)</td>
<td>† May also have some direct smooth-muscle relaxant properties.</td>
</tr>
<tr>
<td>Data from references 14, 51, 65, 77, and 83–92.</td>
<td></td>
</tr>
</tbody>
</table>

The brain contains all five of these receptor subtypes, but the M1 receptor appears to have the most influence on memory and learning. The M2 receptor may have a similar role, and its blockage may affect cognitive function.

The activities of the M3, M4, and M5 receptors in the CNS are not completely understood. Blocking of these central muscarinic receptors can cause hallucinations, confusion, sedation, delirium, and blurred vision, and may affect memory and learning. Perception, psychomotor speed, attention, and executive function may also be affected.

In the future, the use of AC drugs that are more selective for bladder receptors may result in fewer adverse CNS effects. Other factors that might influence the CNS
The major mechanism of AC drugs is their ability to antagonize the effect of acetylcholine on muscarinic receptors, in the cholinergically innervated bladder detrusor muscle. The result is a decrease in the contractions of the detrusor smooth muscle of the bladder and suppression of or a reduction in the intensity of urgency symptoms.55,76,77

Of the five muscarinic receptors, M3 and, to a lesser extent, M2 appear to have the most influence on bladder detrusor muscle activity. Animal trials suggest that M2 and M3 are involved in bladder contraction. The M3 receptor appears to have the most involvement in direct bladder contraction; the M2 receptor is indirectly involved by opposing beta-receptor activity.78 M2 and M3 receptors appear to work synergistically to control the micturition process.54,75,78

As discussed earlier, the future role of agents with greater selectivity for the bladder with primary effects on the M3 and M2 receptor types may result in a more tolerable side-effect profile.54,55,79 All current AC drugs lack true specificity for the bladder muscarinic receptors, although one newer agent, darifenacin (Enablex, Novartis), is being promoted as an M3-selective agent, with claims of selectivity to the bladder as compared with other organ systems; however, clinical trials have not validated this claim or clinical advantage.79 The reported binding affinity of these agents does not always correlate with clinical efficacy and tolerability. At present, the muscarinic receptor system remains the main target in the treatment of OAB and is the basis for the mechanism of action of these drugs.

Oxybutynin (Ditropan, Ortho-McNeil) may have additional effects on relaxing the smooth muscle of the bladder.80 The complexity of the receptor systems involved and their relationship to bladder function continue to challenge researchers. In the future, it may be possible to develop agents with an optimal muscarinic receptor profile to target drug therapy for OAB. Beta-receptor-mediated bladder relaxation along with muscarinic antagonist activity may offer an effective combination for treating OAB.

Other receptor systems, neurotransmitters, and substances may also be involved in the pathophysiology of OAB. Further investigation is ongoing to define more specific targets for pharmacotherapy.51,54,55,62,81–88

Clinical Trials

A number of AC drugs have been used in the treatment of OAB (see Table 3). A review that evaluated 32 placebo-controlled trials in approximately 7,000 subjects reported clinical efficacy with all of the available agents.80 Propantheline (Pro-Banthine), dicyclomine (Bentyl), and flavoxate (Urispas, Impax/McNeil), although still available, are rarely used because of their limited efficacy and side-effect profiles.77,83,84–87

Tricyclic antidepressants (TCAs), including imipramine (Tofranil, Novartis/Mallinckrodt), have been used in OAB and in mixed urinary incontinence. Imipramine controls detrusor contractions (through its antimuscarinic effects) and sphincter laxity (through its alpha-adrenergic effects). This dual mechanism of action offers an option for patients with a mixed urge and/or OAB and stress incontinence. The use of TCAs in elderly patients is limited by their significant anti-cholinergic side-effect profile, cardiac conduction abnormalities, and slow onset of action.14,51,86,77,83–88

Over the past five to 10 years, oxybutynin chloride (Ditropan) and tolterodine (Detrol, Pfizer) have been the mainstays of AC therapy for OAB. Compared with the older agents...
Older Drugs

Oxybutynin Chloride

Oxybutynin chloride (OBC, Ditropan) is one of the oldest agents for patients with OAB. Originally available in regular-release (RR) tablets administered up to three times daily, newer formulations include extended-release (ER) tablets and, most recently, a twice-weekly applied transdermal patch (Oxytrol) (Table 6).

Although RR tablets are poorly absorbed with a reported bioavailability of 2% to 11%, the controlled-release (CR) product has improved absorption and is associated with fewer fluctuations in concentration. The CR formulation is an osmotic delivery system with a laser-drilled delivery device, which may remain intact and is seen in the feces. OBC is metabolized by the liver, specifically the cytochrome P450 (CYP 450) 3A4 system (see Drug Interactions earlier), and is eliminated in the feces and urine. One active metabolite, desethyl oxybutynin (DES), has antimuscarinic activity similar to that of its parent. OBC is a tertiary amine compound; it is reported to be a lipophilic chemical with a small molecular size and neutral polarity, suggesting increased CNS penetration compared with other agents.

The mechanism of action appears to be primarily a result of anticholinergic (antimuscarinic) effects on the bladder detrusor muscle. OBC may affect M1, M2, and M3 receptors, and it may have a greater effect on M3, compared with M2, on the bladder detrusor muscle. Other data suggest that it may have a greater selectivity for M3 and M1. Additional effects that may be unique to this drug involve direct smooth muscle–relaxing properties, through a direct spasmylocytic action at higher doses on the detrusor muscle mediated by calcium antagonism.

In clinical trials, OBC was efficacious in reducing incontinence, increasing bladder capacity, and improving symptoms. In some trials, it was more efficacious than tolterodine; the regular-release (RR) form was the least well tolerated. The adverse effects of OBC may be problematic, especially in older patients, and appear to be dose-related. Dry mouth has been reported in 50% to 70% of patients treated with RR OBC and is probably caused by a high affinity for parotid gland muscarinic receptors.

The RR product is associated with a greater incidence of dry mouth than the ER form. An eight-fold greater receptor binding affinity to the parotid gland with OBC versus tolterodine has been reported. Other adverse effects included blurred vision, impaired urination, and nervousness, reported in about 10% of patients. Discontinuation rates for RR OBC were approximately 25% because of adverse effects. Quantitative topographical electroencephalography (EEG) indicated more CNS side effects with OBC than with tolterodine (Detrol) and trospium (Sanctura). Patient questionnaire data also reported more side effects with RR OBC than with tolterodine and trospium.

The controlled-release (CR) formulation of oxybutynin was developed as an attempt to improve tolerability by reducing concentration-dependent adverse events and by producing less conversion of the parent drug to its active metabolite. This product offers an ER effect by using an osmotic system that negates or diminishes the first pass through the liver, resulting in less accumulation of DES, and may result in more tolerable side effects.

The newly released transdermal system (Oxytrol), which results in less first-pass metabolism, also forms a less active DES metabolite and provides improved tolerability. The patch is similar in efficacy to, and is better tolerated than, oral OBC. A study comparing transdermal oxybutynin with long-acting (LA) tolterodine reported similar efficacy, with a trend toward a higher incidence of dry mouth with tolterodine LA. Local reactions reported with the patch include skin erythema and pruritus in up to 17% of patients. Drug interactions may involve the CYP 450 system, specifically 3A4 and 2D6. Drugs that inhibit this system may increase the levels of OBC and the risk of side effects. Increased AC effects may also occur when OBC is used concurrently with other drugs having AC properties.

Tolterodine

Tolterodine (Detrol, Detrol LA) entered the market in the 1990s and has been used extensively in the treatment of OAB. This product is available in RR tablets dosed twice daily and also as a once-daily, long-acting (LA) product designed as a capsule containing microspheres. This microsphere system enables the product to be ingested or sprinkled on food. The bioavailability of tolterodine varies, ranging from 30% to 90%, and is dependent on the CYP 2D6 phenotype. The product is less bioavailable in patients who are more “extensive metabolizers,” but the opposite is true with “poor metabolizers.” Tolterodine is extensively bound to plasma proteins (93%) mainly the alpha-1-glycoprotein. The drug is metabolized by the liver, and its primary metabolic pathway is the CYP 2D6 pathway. The extent of metabolism and excretion (urine or feces) also depends on the CYP 2D6 phenotype. Patients with the poor oxidizer phenotype excrete more drug into the urine.
than patients with the extensive oxidizer phenotype; for these patients, more drug is eliminated in the feces. One active metabolite (the 5-hydroxymethyl metabolite), has anti-muscarinic activity similar to that of the parent compound. It is not known whether tolterodine crosses the placenta or is excreted in breast milk.

The drug’s mechanism of action is similar to that of OBC, but it appears to lack the antispasmodic effects on the smooth muscle of the bladder. Animal data suggest that tolterodine might be more selective for the bladder than OBC is. Tolterodine may also have less affinity for salivary gland muscarinic receptors, suggesting improved tolerability.

Despite the suggested differences in receptor affinities, tolterodine and OBC have similar efficacy and tolerability. A recent meta-analysis reported some nonsignificant trends, such as fewer incontinence episodes with extended-release (XL) OBC versus tolterodine LA; however, OBC RR was reported to be the least well tolerated.

Other trials have noted similar efficacy but improved tolerability and a lower incidence of dry mouth with tolterodine than with OBC. These differences in tolterodine’s tolerability may be a result of greater bladder selectivity or less CNS penetration, attributable to its less lipophilic nature. A small trial of EEG effects with tolterodine, OBC, and trospium supported these findings. The more recent addition of ER and transdermal formulations of OBC may offer similar efficacy and comparable tolerability.

Tolterodine is metabolized by the CYP 450 system, specifically by 2D6 and 3A4. Numerous drugs may inhibit its metabolism and may lead to increased levels and adverse effects. Drugs such as cimetidine (Tagamet, GlaxoSmithKline), fluconazole (Diflucan, Pfizer), erythromycin (Ery-Tab, Abbott), nefazodone (Serzone, Bristol-Myers Squibb), fluoxetine (Prozac, Eli Lilly), and others can interact with this agent, although the clinical significance is not known at this time.

Other agents with AC properties should be used with care to avoid an excessive AC load. Patient monitoring and reviewing the patient’s medication profile are important when tolterodine is prescribed with other agents.

<table>
<thead>
<tr>
<th>Table 6</th>
<th>Antimuscarinic Drugs Commonly Used in the Treatment of Overactive Bladder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxybutynin (Ditropan, Ditropan XL, Oxytrol)</td>
<td>Tolterodine (Detrol, Detrol LA)</td>
</tr>
<tr>
<td>Chemical structure</td>
<td>Tertiary amine</td>
</tr>
<tr>
<td>Receptor binding</td>
<td>Nonselective</td>
</tr>
<tr>
<td>Oral bioavailability</td>
<td>Poor (2%–15%)</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Metabolized by CYP 3A4</td>
</tr>
<tr>
<td>Excretion</td>
<td>Less than 5% of active compound in urine</td>
</tr>
<tr>
<td>Half-life</td>
<td>About 2 hours; Extended-release, 13 hours; Patch, 7–8 hours</td>
</tr>
<tr>
<td>Dosing</td>
<td>• Regular-release: 5 mg two to three times/day; XL: 5–30 mg once daily; Transdermal system, 3.9 mg twice weekly (hips, abdomen, or buttock)</td>
</tr>
</tbody>
</table>

CYP = cytochrome P450; LA = long-acting; M = muscarinic receptor subtypes (M1–M3); XL = extended-release.

Adapted from references 71, 79, 85, 133, 134, and 135.
Newer Agents (Approved in 2004)

In an effort to improve quality of life as well as patient compliance, research has focused on the need for more selective and tolerable agents in the treatment of OAB. Improved tolerability may help patient compliance, as reported in some studies. 85,131,132 This search for agents with bladder specificity led to the development, approval, and release of three drugs during 2004 (trospium, solifenacin, and darifenacin). Properties of several older and newer OAB drugs are compared in Table 6. Initial claims for OBC and tolterodine indicated similar efficacy and an improved tolerability profile because of their greater selectivity for bladder muscarinic receptors.

Few studies have compared OBC and tolterodine with these newer agents, but a few clinical trials will be discussed. It is not clear, without more comparison trials, whether these recently approved antimuscarinic agents have clinical advantages over OBC and tolterodine. 90,85,133–135

Trospium Chloride

Trospium (Sanctura), the first of the three agents to enter the U.S. market in 2004, has been available in Europe for more than 20 years. It is taken twice daily and differs from other antimuscarinic agents in that its chemical structure is a quaternary amine. This structure results in less CNS penetration and a potential for fewer side effects. 124 The limiting consequence of the drug’s hydrophilic chemical structure is a reduced oral bioavailability; therefore, it should be taken one hour before or two hours after meals. 124 Metabolism is limited, with fewer than 5% to 10% of these metabolites excreted in the urine.

At normal doses, CYP 450 system involvement is minimal. Excretion is primarily renal via tubular secretion and involves the parent compound. Other drugs may compete for this elimination mechanism (e.g., metformin, digoxin), resulting in increased levels of either trospium or the coadministered drug. It has been proposed that this tubular secretion mechanism is a therapeutic advantage because of the high bladder concentration, which ensures efficacy at the target tissue and, possibly, improved tolerability. 92,124

The half-life of trospium is approximately 12 to 20 hours. For older patients and those with severe renal impairment (a creatinine clearance [CrCl] < 30 ml/minute), the dose should be reduced to 20 mg daily. Caution is recommended in patients with moderate-to-severe liver disease. 92,124 Trospium’s muscarinic receptor-binding profile has been described as having high affinity and specificity for M1, M2, and M3 receptors. Further evaluation is necessary to assess the clinical significance of this receptor profile in reducing side effects as contrasted with other AC agents. Trospium is also reported to have smooth muscle–relaxant properties. 92,110,114,136–138

Placebo-controlled trials report efficacy in treating OAB, although comparative trials with other AC agents are limited. Trials comparing trospium with OBC and tolterodine report greater tolerability with tolterodine than with OBC. 138,139 Adverse effects of trospium appear to be similar to those of tolterodine and OBC, although CNS side effects may be fewer as a result of reduced CNS penetration secondary to its quaternary amine structure. 71,142

Other data reported minimal effects on rapid eye movement (REM) sleep, suggesting improved sleep hygiene. 92 Safety and tolerability studies with trospium suggested dose-related side-effect profiles, although tolerability was seen with a wide range of doses. 143 Another potential advantage of trospium, compared with OBC or TD, is minimal CYP 450 metabolism and thus a reduced potential for drug interactions. Higher doses may inhibit the CYP 2D6 enzyme system, and careful monitoring is necessary. 134,144–146

Contraindications have been discussed on page 466. A pregnancy category C warning suggests that trospium be used only if the potential benefits outweigh the risks. 92

Solifenacin

Solifenacin (VESicare), another new AC agent, is dosed at 5–10 mg daily, and it has excellent bioavailability. It is widely distributed with extensive hepatic metabolism, the primary pathway involving CYP 450 3A4, with at least one pharmacologically active metabolite reported.

The half-life is approximately 50 hours because of its extensive distribution and slow elimination, which allow once-daily dosing. This half-life may be increased in patients with hepatic impairment; therefore, a dosage adjustment, for a maximum of 5 mg daily, is recommended in patients with moderate hepatic impairment (class Child-Pugh B). The drug should be avoided in cases of severe hepatic impairment (class Child-Pugh C).

Solifenacin and its metabolites are excreted in urine (70%) and in feces (25%). In a case of severe renal impairment (CrCl < 30 ml/minute), doses should be limited to 5 mg daily. 91,133,135 The drug is approximately 95% protein-bound, primarily to alpha-glycoprotein, which has minimal clinical significance. Little information is available involving its specific binding affinity. Although solifenacin is more selective for the bladder, no clinical evidence has supported this potential advantage. 147 In clinical trials, solifenacin was more effective than placebo. More than 99% of patients found it to be well tolerated and “acceptable” or “satisfactory.” Reductions in episodes of urgency, incontinence, frequency, and increased volume per void were reported to be significantly improved compared with placebo. 91,148–153

In a trial comparing solifenacin 5 and 10 mg with tolterodine 2 mg twice daily, no statistical differences between the treatment arms were observed; however, this trial was not powered to detect differences between the treatment groups. 133 Another trial comparing solifenacin 5 and 10 mg and tolterodine LA 4 mg twice daily showed similar efficacy in OAB, measured as reductions in nocturia episodes. 155

The effect of solifenacin on cardiac electrophysiology was significant at a dose of three times the maximum recommended dose. At normal therapeutic doses of 5 to 10 mg, no clinically significant effect on QTc prolongation was reported. This observation should be considered if solifenacin is used with other drugs that prolong the QTc interval or if the patient has a history of QTc prolongation. 91

Like OBC and tolterodine, solifenacin is a substrate of the CYP 450 enzymes, specifically the CYP 3A4 pathway. The dose should be limited to 5 mg daily when the drug is used concurrently with CYP 3A4 inhibitors such as ketoconazole (Nizoral, Janssen), fluconazole, and erythromycin. 91
Darifenacin

Darifenacin is given once daily as a 7.5- or a 15-mg CR tablet. As with trospium, it has poor oral bioavailability (15% to 25%). Metabolism occurs via the CYP 450 system, and 2D6 and 3A4 are the primary pathways. Because of darifenacin’s extensive first-pass metabolism and because some patients metabolize CYP 2D6 pathway drugs poorly, the drug may have greater bioavailability with these patients. The drug’s metabolism may occur more extensively via the CYP 3A4 pathway in patients who are considered poor metabolizers. Excretion occurs via both urine and feces. The elimination half-life is about 15 hours.

Doses should not exceed 7.5 mg in patients with moderate hepatic impairment (class Child-Pugh B) or when the drug is given with CYP 3A4 inhibitors. Renal dysfunction has minimal, if any, influence on clearance, but caution is recommended for patients with renal disease.90,156

According to the manufacturer, Novartis, darifenacin has a higher affinity for the M3 receptor than for other muscarinic receptors.90 Although Novartis suggests that this may offer improved tolerability, the presence of M3 receptors in the salivary glands, GI tract, and iris of the eye may still lead to the common AC side effects (Table 5).90,130,135

Compared with placebo, darifenacin reduced the number of weekly incontinence episodes, daily micturitions, and nocturnal awakenings. Trial doses ranged from 7.5 to 15 mg and were titrated up or down to 7.5 mg or 30 mg, respectively, based on efficacy and tolerability. Side effects were dry mouth and constipation, and these were related to the dose.135,156,138,139 Some trials reported similar cardiac and CNS effects with darifenacin versus placebo.130,156

Like other newer antimuscarinics, comparative data on other agents in the class are limited. A trial comparing darifenacin 15 mg daily with OBC IR 5 mg three times per day reported similar efficacy but a higher rate of dry mouth and blurred vision with OBC.158 In a trial comparing darifenacin 15 mg with tolterodine 2 mg twice daily, efficacy and side-effect profiles were similar.90,156 Adverse events, including dry mouth, CNS effects, and cardiac effects, were similar to those associated with placebo, suggesting support for darifenacin’s claim of M3 bladder receptor selectivity.70,135

The drug-interaction profile of darifenacin is similar to that of OBC and tolterodine in terms of involvement of the CYP 450 3A4 and 2D6 enzyme systems. The darifenacin dose should be reduced when it is used with inhibitors of the CYP 450 3A4 system such as ketoconazole, clarithromycin (Biaxin, Abbott), and others. Similarly, patients taking potent CYP 450 2D6 inhibitors such as paroxetine (Paxil, GlaxoSmithKline) may also need dose reductions.

Other reported drug interactions included slight increases in the concentration of digoxin and midazolam (Versed, Roche) when used concurrently with darifenacin, in addition to the potential additive AC effects when it is used with other AC agents.

Contraindications to the use of darifenacin are similar to those for other AC drugs. The pregnancy category C warning suggests that darifenacin should be used only if the benefits outweigh the risks.

It is not known whether darifenacin is excreted in breast milk. Decisions as to whether to continue therapy in nursing mothers should be based on an assessment of the risks and benefits of continued use.90,135

Darifenacin may have advantages because of its bladder M3 selectivity, but clinical evidence supporting this is lacking in humans.70,156 This concept is complicated by the fact the M3 receptors are also located in other organ systems (the CNS, salivary glands, and the GI tract). The research also suggests a role for the M2 receptor in bladder contractility.70,161,162

Table 7 Counseling Points for Patients with Overactive Bladder

| 1. Explain the basic role of the medication and how it works on the bladder. |
| 2. Explain the long-acting and short-acting versions (do not crush extended-release tablets). |
| 3. Discuss missing doses (do not double up the next day). |
| 4. Trospium should be taken one hour before or two hours after meals. |
| 5. Suggest adequate fluid intake while patients are taking these agents. |
| 6. Because these medications may cause drowsiness, blurred vision, or dizziness, recommend caution if the patient must drive. |
| 7. Advise a balanced diet or a dietary consultation if constipation occurs. |
| 8. Patients should consult their physician or go to the emergency department if they experience severe abdominal pain. |
| 9. Patients should report unusual reactions (visual changes, headache, stomach problems, itching, difficulty breathing) to their physician or pharmacist. |
| 10. If dispensing the drug in the summertime, mention that decreased sweating may occur and may contribute to hyperthermia. |
| 11. Although most patients receiving these agents are older, these drugs are classified as pregnancy category C except for oxybutynin (category B). Inform women of childbearing age that they should be certain that their physician knows whether they are pregnant or breast-feeding. |
| 12. Advise that medications should always be stored away from heat, moisture, and direct light. |
| 13. Patients should be advised to wash their hands before applying the oxybutynin (Oxytrol) patch. They should leave the patch in its sealed wrapper until it is ready to use. They should not apply the patch over an old patch, and they should never place the patch over burns, cuts, or irritated skin. |
| 14. Patients should follow dosing instructions or consult their pharmacist or health care provider if they have questions. |

Adapted from references 90–92 and 115.
Conclusion

The antimuscarinic agents used in the treatment of OAB include eight chemical entities, seven oral forms, and one transdermal formulation. All of these forms differ somewhat in their pharmacokinetic properties, dosing, and side-effect profiles (see Table 6). Differences in muscarinic receptor affinity have also been reported, but the clinical advantage among these variations is not well known at this time.85,111,133,134,135

The clinical efficacy of each formulation appears to be similar, as reported in clinical trials. All these agents bring about improved responses, when compared with placebo, and when they are used in combination with various behavioral interventions, there may be additional benefits.42-44,50,143-145

At present, it is difficult to suggest that one of the newer agents (trospium, solifenacin, darifenacin, or the patch) has an advantage over the older agents (oxybutynin and tolterodine) except for some differences in tolerability. Trospium, with its significant dependence on a tubular secretion mechanism for elimination, suggests a more favorable target effect on the bladder than on other body systems, but the clinical significance of this property is not clear. In addition, trospium’s highly charged quaternary ammonium group suggests little or no penetration across the blood–brain barrier and may be associated with fewer CNS effects, compared with IR oxybutynin in healthy volunteers.71,142 This may be an important advantage and may have utility in some (elderly) patients who have difficulty tolerating other agents within the class.138,139,143

The selective blockage of the M3 receptor by darifenacin may also have a theoretical advantage in its more selective effect on the bladder.150 This concept is complicated by the fact that M3 receptors are also located in other organ systems in addition to the suggested role of the M2 receptor in bladder contractility.91,101-104 Tolerability may be the decisive factor in the selection of a preferred agent.

Whether it is through decreased CNS penetration or decreased affinity for the M1 muscarinic receptors in the brain, the newer agents demonstrate a potential for improved side-effect profiles over IR OBC and, possibly, tolterodine.124,130,134,147,155-158 Further clinical evidence is needed in order to determine the best option for the treatment of OAB, and an individual approach is recommended. Future agents will focus on targeting other receptor systems and will possibly be used in combination with existing therapies.

Although pharmacological therapies have been effective in the treatment of OAB, side-effect profiles and a lack of patient counseling may result in poor compliance and ineffective management. Pharmacists can play a major role in counseling patients on the various antimuscarinic agents used in OAB, educating them about their proper use, and encouraging them to maintain compliance with their regimens (Table 7).

References

CONTINUING EDUCATION CREDIT

Conflict-of-Interest (COI) Statement
Dr. DeMaagd has disclosed that he is on the Speaker’s Bureau for Forest Pharmaceuticals. Dr. Geibig has no relationships to disclose. The content of this article has been reviewed under Jefferson’s Continuing Medical Education COI policy.
Continuing Education Questions for Physicians and Pharmacists

P&T® 2006;31(8):462–474
ACPE Program #079-999-06-018-H01
Expiration Date: August 31, 2007

TOPIC: An Overview of Overactive Bladder and Its Pharmacological Management with a Focus on Anticholinergic Drugs

CME Accreditation

This activity has been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of Jefferson Medical College and MediMedia USA, Inc.

Jefferson Medical College of Thomas Jefferson University, as a member of the Consortium for Academic Continuing Medical Education, is accredited by the Accreditation Council for Continuing Medical Education to sponsor continuing medical education for physicians. All faculty/authors participating in continuing medical education activities sponsored by Jefferson Medical College are expected to disclose to the activity audience any real or apparent conflict(s) of interest related to the content of their article(s). Full disclosure of these relationships appears on the last page of the article.

Continuing Medical Education Credit

This CME activity is designed to assist physicians and other health care professionals who are P&T committee members in making formulary decisions. Its goal is to increase participants’ ability to recognize and treat important medical problems.

Jefferson Medical College designates this continuing medical education activity for a maximum of one Category 1 credit toward the Physician’s Recognition Award (PRA) of the American Medical Association. Each physician should claim only those credits that he/she actually spent in the educational activity.

This credit is available for the period of one year from the date of publication.

Although forms will be processed when received, certificates for CME credits will be issued every six months, in February and August. Interim requests for certificates can be made by contacting the Jefferson Office of Continuing Medical Education at (215) 955-6992 or by going online to http://jeffline.tju.edu/jeffcme/.

Continuing Pharmacy Education Credit

The Department of Health Policy, Thomas Jefferson University Hospital, is approved by the Accreditation Council for Pharmacy Education (ACPE) as a provider of continuing pharmaceutical education and complies with the Criteria for Quality for continuing pharmaceutical education programming. This program (079-999-06-018-H01) is acceptable for 1.0 hour of continuing education credit (0.1 CEUs) in states that recognize ACPE-approved providers. Statements of Credit indicating hours/CEUs will be mailed within six to eight weeks to participants who completed this activity and submitted a completed evaluation with payment.

How to Apply for CE Credit

1. Each CE article is prefaced by learning objectives for participants to use to determine whether the article relates to their individual learning needs.
2. Read the article carefully, paying particular attention to the tables and other illustrative materials.
3. Complete the questions and fill in the answers on the evaluation form on the next page.
4. Complete the CE Registration and Evaluation Form. Type or print your full name and address in the space provided, and evaluate the activity as requested. In order for the form to be processed, all information must be complete and legible.
5. Payment of $10 per exam is required for processing and maintenance of records. Make checks payable to P&T®. This processing fee is non-refundable.
6. Send the completed form, answer sheet, and $10 payment to:
 Department of Health Policy
 Thomas Jefferson University
 Attn: Continuing Education Credit
 1015 Walnut Street, Suite 115
 Philadelphia, PA 19107

7. Be sure to mail the Registration, Evaluation Form, and $10 payment within one year of the date of publication. After that date, this article will no longer be designated for credit and forms cannot be processed.
Continuing Education Questions for Physicians and Pharmacists

TOPIC: An Overview of Overactive Bladder and Its Pharmacological Management with a Focus on Anticholinergic Drugs

APCE Program #079-999-06-018-H01

CE Evaluation: Select the one best answer to each of the following questions, and record your response on the examination answer sheet. Complete the additional requested information. Forward the answer sheet, with appropriate payment, to the Department of Health Policy, Thomas Jefferson University Hospital, at the address indicated. A certificate of completion will be mailed within six to eight weeks of receipt of your exam/payment. (A minimum test score of 70% is required.)

Multiple Choice

Select the one correct answer.

1. Which of the following is a complication of OAB?
 a. urinary tract infection
 b. skin ulceration
 c. falls
 d. all of the above

2. What is the estimated total yearly cost of OAB?
 a. $1 million
 b. $5 million
 c. $13 billion
 d. $20 million

3. According to the NOBLE survey project, OAB affects approximately how many Americans?
 a. 15 million
 b. 20 million
 c. 25 million
 d. 30 million

4. Which of the following drugs reportedly has the most M3 selectivity?
 a. oxybutynin
 b. tolterodine
 c. solifenacin
da. darifenacin

5. Which of the following drugs has the longest half-life (45 to 68 hours)?
 a. tolterodine
 b. trospium
 c. solifenacin
 d. darifenacin

6. Which of the following drugs, when used orally, should be taken on an empty stomach (e.g., one hour before or two hours after meals)?
 a. oxybutynin
 b. tolterodine
 c. trospium
 d. darifenacin

7. Which of the following drugs is available in a transdermal dosage form?
 a. oxybutynin
 b. tolterodine
 c. trospium
 d. solifenacin

8. Which of the following muscarinic receptors is located on the bladder?
 a. M1
 b. M3
 c. M4
 d. M5

9. All of the following are central side effects of anticholinergic drugs except:
 a. mydriasis.
 b. sedation.
 c. confusion.
d. sleep disruption.

10. Anticholinergic agents are contraindicated in all of the following except:
 a. glaucoma.
 b. urinary and gastric obstructive disorders.
 c. arthritis.
d. performing tasks that require mental alertness.
CE Registration and Evaluation Form

Date of publication: August 2006
Title: An Overview of Overactive Bladder and Its Pharmacological Management with a Focus on Anticholinergic Drugs
Authors: George DeMaagd, PharmD, BCPS, and Jeffrey D. Geibig, PharmD
Submission deadline: August 31, 2007
ACPE Program #079-999-06-018-H01

Registration
Name: __ Degree: ____________________________________
Street address: __ Last 4 Digits of Social Security No. (Web ID): __________
City: ___________________________________ State: _________ Zip:__________ Telephone: _____________________________
E-mail Address: _______________________________________ Check one:
II Physician
II Pharmacist
II Other

Time needed to complete this CE activity in hours: ☐ 0.5 hr ☐ 1 hr ☐ 1.5 hr ☐ 2 hr ☐ Other _________________________

Certification: I attest to having completed this CE activity. ___
Signature (required) Date ______________

Answer Sheet
Please fill in the box next to the letter corresponding to the correct answer

1. a ☐ b ☐ c ☐ d ☐ 6. a ☐ b ☐ c ☐ d ☐
2. a ☐ b ☐ c ☐ d ☐ 7. a ☐ b ☐ c ☐ d ☐
3. a ☐ b ☐ c ☐ d ☐ 8. a ☐ b ☐ c ☐ d ☐
4. a ☐ b ☐ c ☐ d ☐ 9. a ☐ b ☐ c ☐ d ☐
5. a ☐ b ☐ c ☐ d ☐ 10. a ☐ b ☐ c ☐ d ☐

Evaluation
Rate the extent to which:

<table>
<thead>
<tr>
<th>Very High</th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
<th>Very Low</th>
</tr>
</thead>
</table>

1. Objectives of this activity were met
2. You were satisfied with the overall quality of this activity
3. Content was relevant to your practice needs
4. Participation in this activity changed your knowledge/attitudes
5. You will make a change in your practice as a result of participation in this activity
6. This activity presented scientifically rigorous, unbiased, and balanced information
7. Individual presentations were free of commercial bias
8. Adequate time was available for Q&A
9. Which ONE of the following best describes the impact of this activity on your performance:
 ☐ This program will not change my behavior because my current practice is consistent with what was taught.
 ☐ This activity will not change my behavior because I do not agree with the information presented.
 ☐ I need more information before I can change my practice behavior.
 ☐ I will immediately implement the information into my practice.
10. Will you take any of the following actions as a result of participating in this educational activity (check all that apply)
 ☐ Discuss new information with other professionals
 ☐ Consult the literature
 ☐ Discuss with industry representative(s)
 ☐ Participate in another educational activity
 ☐ Other _________________________
 ☐ None

Send the completed form and $10 payment (make checks payable to P&T) to: Department of Health Policy, Thomas Jefferson University, Attn: Continuing Education Credit, 1015 Walnut Street, Suite 115, Philadelphia, PA 19107.