You are here

Genome Sequencing Uncovers New Cause for Osteoporosis

Discovery paves new pathway to pursue in developing drugs

Using extensive genetic data compiled by the UK10K project, an international team of researchers led by Dr. Brent Richards of the Lady Davis Institute at the Jewish General Hospital in Montreal has identified a genetic variant near the gene EN1 as having the strongest effect on bone mineral density (BMD) and fracture identified to date. The findings are published in the forthcoming issue of the journal Nature.

"EN1 has never before been linked to osteoporosis in humans, so this opens up a brand-new pathway to pursue in developing drugs to block the disease," Dr. Richards, an Associate Professor of Medicine at McGill University, says in explaining the importance of the discovery.

"The effect of this uncommon genetic variant that we identified in this gene is twice as large as any previously identified genetic variants for BMD and fracture," adds Vince Forgetta, first author on this collaborative project from the Genetic Factors for Osteoporosis Consortium and a Research Associate at the Lady Davis Institute.

Osteoporosis is a common disease that will lead to fractures in one-third to one-half of all women over the course of their lives. Because osteoporosis becomes more severe with age, it is becoming more prevalent with the overall aging of the population. There are few safe and effective treatments for osteoporosis, and no curative therapies are available.

The UK10K project has measured genetic variations in 10,000 individuals in great detail, allowing researchers to correlate rare genetic changes with human disease by comparing the DNA of healthy individuals with those who have health problems. The use of such an extensive sample size allows for the observation of genetic variants that are not discernable among smaller groups. This particular study also stands as proof of principle that uncommon genetic variants can have a significant impact on common diseases.

"The hypothesis is that the genetic sequencing being done by UK10K will expose previously unknown genetic factors underlying disease," said Dr. Celia Greenwood, a biostatistician who is Senior Investigator at the Lady Davis Institute and Associate Professor at McGill University. She co-chaired the statistics group for a companion Nature article on the methodology behind UK10K. "We are finally able to extract enough data to discern variants that are rare in the overall population and are more frequent among those with common diseases. This is precisely what has been revealed in the case of EN1 and osteoporosis."

This study represents an initial realization of the hope that accompanied the development of genetic sequencing technology: that sophisticated analysis of the genome would reveal those genes associated with disease. The promise for the contribution genetics can make to human health lies in the discovery of novel compounds that can counter the effect of deleterious genetic variants influencing these genes.

Sources: EurekaAlert; September 14, 2015; Nature; September 14, 2015

Recent Headlines

Averts Disease Worsening, Reduces Potential for Blindness
Risk May Remain for 6 Months After Treatment
FDA Removes Boxed Warning With Drug’s Fifth Approval
Overeager Use of Recommendations Creates Problems
May Lead to Personalized Treatment for Schizophrenia, Other Illnesses
Artificial Intelligence Enables Platform to Detect Amyloid PET Status
Kadcyla Cut Risk of Recurring Disease by Half Compared to Herceptin
First Medicines for Adults With Wild-type or Hereditary ATTR-CM