You are here

Biomarker Could Predict Responses to Breast and Prostate Cancer Treatment

Genetic biomarker governs progression of many cancers

Researchers at Cedars-Sinai in Los Angeles have identified a novel genetic biomarker responsible for the progression of many breast and prostate cancers. The finding could bolster efforts to better identify patients who respond to certain types of chemotherapy drugs that attack the most aggressive forms of the disease.

"Understanding and identifying biomarkers is a vital step toward cancer research and care," says Michael Freeman, PhD, vice chair of research in the Cedars-Sinai Department of Surgery and lead author of the study published in the journal Scientific Reports. "New profiling strategies exemplified by this study will ultimately improve our ability to treat cancer patients."

The newly identified biomarker — diaphanous-related formin-3, or DIAPH3 — participates in a protein interaction that makes cells rigid. The study found that when this biomarker is lost or lowered, cells become "deformable," squeezing through tissue spaces, causing disease growth or progression. This phenomenon is known as an amoeboid phenotype.

Researchers can utilize this knowledge to better identify patients who will respond to common chemotherapy drugs, called taxanes, which are typically given to patients with the most aggressive forms of cancer. Taxanes work by damaging protein structures in cancer cells.

This is the first study to identify a targeting strategy for tumor cells that exhibit amoeboid properties.

"By identifying cancer biomarkers, then customizing treatment plans for individuals based on this genetic information, we can greatly improve the effectiveness of cancer therapies," says Shlomo Melmed, MD, senior vice president of Academic Affairs and director of the Burns and Allen Research Institute. "This customized plan replaces a one-size-fits-all approach to cancer treatment."

Next steps involve the development of a biomarker tool that will allow researchers to test these findings prospectively in patients.

Funding for this work was supported by the National Institutes of Health, Department of Defense, and by developmental funds from the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute.

Source: Cedars-Sinai; August 6, 2015.

Recent Headlines

NY Hospitals Required to Implement Protocols in Suspected Cases
Presence of BOK Protein Key for Positive Treatment Response
Patient Access to Inhaler Use Data Could Improve Asthma Management
Overall Survival 4.3 Months’ vs. 1.5 Months for Traditional Regimens
Primary Immunodeficiencies Affect 250,000 People in U.S.
More Than 25% of Patients Responded to Xpovio/Dexamethasone Combo
Attacks Cancerous Cells, Leaves Healthy Tissues Alone
Moderates Pre-diabetes Progression, Reduces Cholesterol Levels